Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Intervalo de año de publicación
1.
Oecologia ; 204(3): 603-612, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38393366

RESUMEN

Tree diversity promotes predator abundance and diversity, but evidence linking these effects to increased predation pressure on herbivores remains limited. In addition, tree diversity effects on predators can vary temporally as a function of environmental variation, or due to contrasting responses by different predator types. In a multi-year study, we assessed temporal variation in tree diversity effects on bird community abundance, diversity, and predation rates as a whole and by functional group based on feeding guild (omnivores vs. insectivores) and migratory status (migrant vs. resident). To this end, we conducted bird point counts in tree monocultures and polycultures and assessed attacks on clay caterpillars four times over a 2-year period in a tree diversity experiment in Yucatan, Mexico. Tree diversity effects on the bird community varied across surveys, with positive effects on bird abundance and diversity in most but not all surveys. Tree diversity had stronger and more consistent effects on omnivorous and resident birds than on insectivorous and migratory species. Tree diversity effects on attack rates also varied temporally but patterns did not align with variation in bird abundance or diversity. Thus, while we found support for predicted increases in bird abundance, diversity, and predation pressure with tree diversity, these responses exhibited substantial variation over time and the former two were uncoupled from patterns of predation pressure, as well as contingent on bird functional traits. These results underscore the need for long-term studies measuring responses by different predator functional groups to better understand tree diversity effects on top-down control.


Asunto(s)
Herbivoria , Árboles , Animales , Árboles/fisiología , Insectos/fisiología , Aves/fisiología , Conducta Predatoria/fisiología , Ecosistema
2.
Ecol Evol ; 13(12): e10801, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38089899

RESUMEN

Reproductive isolation is conferred by several barriers that occur at different stages of reproduction. Comprehensive reviews on the topic have identified that barriers occurring prior to zygote formation are often stronger than those that occur afterward. However, the overrepresentation of temperate perennial herbs in the current literature precludes any generalization of this pattern to plants that present other life forms and patterns of distribution. Here, we assessed reproductive isolation barriers and their absolute contribution to reproductive isolation and asymmetry in Cnidoscolus aconitifolius and C. souzae, two closely related tropical shrub species that co-occur on the Yucatan peninsula. The reproductive barriers assessed were phenological mismatch, pollinator differentiation, pollen-pistil incompatibility (three pre-zygotic barriers), fruit set failure, and seed unviability (post-zygotic barriers). Reproductive isolation between the study species was found to be complete in the direction C. aconitifolius to C. souzae, but only partial in the opposite direction. One post-zygotic barrier was the strongest example. Most barriers, particularly the pre-zygotic examples, were asymmetrical and predicted the direction of heterospecific pollen flow and hybrid formation from C. souzae to C. aconitifolius. Both parental species, as well as the hybrids, were diploid and had a chromosome number 2n = 36. More studies with tropical woody perennials are required to fully determine whether this group of plants consistently shows stronger post-zygotic barriers.

3.
Neotrop Entomol ; 51(2): 199-211, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34988944

RESUMEN

Although insect herbivorous communities in tropical forests are known to exhibit strong seasonality, few studies have systematically assessed temporal patterns of variation in community structure and plant-herbivore interactions in early successional arboreal communities. We assessed seasonal and interannual variation of the diversity and composition of herbivorous beetles and the tree-herbivore network in a recently established polyculture forest plantation, during the dry and the rainy seasons of 2012 and of 2013. Species richness was similar between years, while the ecological diversity was higher in 2012. Comparing seasons, no differences were found in 2012, whereas in 2013, the species richness and ecological diversity were higher during the dry season. The species composition differed radically across years and seasons. Moreover, a quantitative nested pattern was consistently found across both temporal scales, more influenced by species densities. We found temporal changes in the species strength, whereas connectance and interaction evenness remained stable. Rapid temporal changes in the structural complexity of recently established polyculture plantations and the availability and quality of the trophic resources they offer may act as drivers of beetle diversity patterns, promoting rapid variation in herbivore composition and some interacting attributes. Nonetheless, network structure, connectance, and interaction evenness remained similar, suggesting that reorganizations in the distribution of species may determine the maintenance of the patterns of interaction. Further work assessing long-term temporal dynamics of herbivore beetle assemblages are needed to more robustly relate diversity and interaction patterns to biotic and abiotic factors and their implications in management programs.


Asunto(s)
Escarabajos , Animales , Biodiversidad , Ecosistema , Bosques , Herbivoria , Árboles
4.
Neotrop Entomol ; 50(4): 551-561, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33852131

RESUMEN

Although commercial forest plantations have experienced a major growth in the tropics over the past decades, little attention has been paid to their role in the conservation of epigeal arthropod communities. We studied diversity patterns of the epigeal beetle community in monoculture and polyculture forest plantations with big-leaf mahogany (Swietenia macrophylla). Likewise, we explored the existence of indicator species of each plantation type. Our findings highlight that each plantation type promotes multiple impacts on diversity patterns. We found that monocultures positively influenced overall beetle species richness and ecological diversity. When broken down by guild, both predator and decomposer species richness were similar between monoculture and polyculture, whereas for beetle diversity we found contrasting responses by guild: decomposer diversity was greater in monoculture whereas predator diversity was higher in polyculture. In addition, species composition differed between monoculture and polyculture, except for the predator guild. Species turnover was the main component explaining beta diversity patterns at all levels, indicating that each plantation type promotes biologically distinct epigeal assemblages. Few superabundant heliophile species dominated the beetle community structure; moreover, monocultures had a composition skewed towards heliophile species whereas polyculture favored umbrophile species. These patterns could be attributed to differences in habitat complexity between plot types, namely differences in tree cover. Additionally, indicator species only were identified in polycultures, reflecting their higher spatial complexity. Monoculture and polyculture plantations with big-leaf mahogany are complementary agroecosystems for preserving diverse epigeal beetle communities and should be considered valuable tools for conservation purposes in the tropics.


Asunto(s)
Biodiversidad , Escarabajos , Agricultura Forestal , Animales , Escarabajos/clasificación , Bosques , Árboles
5.
Acta biol. colomb ; 26(1): 42-53, ene.-abr. 2021. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1152667

RESUMEN

ABSTRACT Elevational patterns in flowering phenology have been reported for trees, shrubs and herbs. However, for vascular epiphytes that rely on atmospheric sources for humidity and nutrients, and depend on phorophyte microhabitat, elevational patterns of variation are unknown. In this study, we described the flowering phenology of Tillandsia carlos-hankii, an epiphytic bromeliad, along an elevational gradient in Capulálpam de Méndez, Oaxaca. We analyzed the onset, seasonality and duration of flowering along and within different elevation zones, and we evaluated the effect of phorophyte features (tree height, DBH and canopy diameter) on flowering start date and duration. From June 2016 to May 2017, we periodically recorded phenological data from six populations along three elevation zones ("low": 2151 to 2283 m. a. s. l., "medium": 2284 to 2416 m. a. s. l. and "high": 2417 to 2548 m. a. s. l.), monitoring two population per zone. Start of flowering occurred between December and January, beginning six to 16 days earlier at low elevations than in the other zones, although this difference was not statistically significant. We observed marked flowering seasonality at all the elevation zones, with differences between zones (W≥18.49, p≤0.0001) and between the populations at medium and high elevations (W≥8.57, p≤0.05). Flowering duration spanned from December to May. Phorophyte features were not related to the onset or duration of flowering (t≤-1.47, p≥0.14, in all cases). Our results suggest that vascular epiphytes follow the same elevational patterns in phenology as other life forms, and that populations in the same elevation range can vary. The causes of such intra-elevational variation merit further investigation.


RESUMEN Se han reportado los patrones altitudinales en la fenología de floración para árboles, arbustos y hierbas. Sin embargo, para epífitas vasculares, que dependen de fuentes atmosféricas para la humedad y los nutrientes, y del microhábitat del forofito, los patrones de variación en gradientes de elevación se desconocen. Se describe la fenología de floración de Tillandsia carlos-hankii, una bromelia epífita, en un gradiente de elevación en Capulálpam de Méndez, Oaxaca. Se analiza el inicio, estacionalidad y duración de su floración entre y dentro de diferentes elevaciones y se evalúa también el efecto del forofito (altura, DAP y diámetro de copa) sobre el inicio y la duración de la floración. De junio de 2016 a mayo de 2017, se monitorearon individuos localizados en seis poblaciones en tres elevaciones (bajo: 2151-2283 m. s. n. m., medio: 2284-2416 m. s. n. m., alto: 2417-2548 m. s. n. m.), dos poblaciones por zona. El inicio de la floración ocurrió entre diciembre y enero, empezando de seis a 16 días antes en la elevación baja que en las otras, aunque estas diferencias no fueron significativas. Hubo una marcada estacionalidad en todas las zonas de elevación, con diferencias entre elevaciones (W≥18,49, p≤0,0001) y entre poblaciones de media y alta elevación (W≥8,57, p≤0,05). La floración duró de diciembre a mayo. Las características del forofito no estuvieron relacionadas con el inicio ni la duración de la floración (t≤-1,47, p≥0,14, en todos los casos). Los resultados sugieren que las epífitas vasculares siguen el mismo patrón fenológico altitudinal de otras formas de vida, y que las poblaciones en un misma elevación altitudinal pueden variar. Las causas de tal variación intra-altitudinal merecen mayor investigación.

6.
New Phytol ; 230(6): 2117-2128, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33710642

RESUMEN

The disruption of mutualisms by invasive species has consequences for biodiversity loss and ecosystem function. Although invasive plant effects on the pollination of individual native species has been the subject of much study, their impacts on entire plant-pollinator communities are less understood. Community-level studies on plant invasion have mainly focused on two fronts: understanding the mechanisms that mediate their integration; and their effects on plant-pollinator network structure. Here we briefly review current knowledge and propose a more unified framework for evaluating invasive species integration and their effects on plant-pollinator communities. We further outline gaps in our understanding and propose ways to advance knowledge in this field. Specifically, modeling approaches have so far yielded important predictions regarding the outcome and drivers of invasive species effects on plant communities. However, experimental studies that test these predictions in the field are lacking. We further emphasize the need to understand the link between invasive plant effects on pollination network structure and their consequences for native plant population dynamics (population growth). Integrating demographic studies with those on pollination networks is thus key in order to achieve a more predictive understanding of pollinator-mediated effects of invasive species on the persistence of native plant biodiversity.


Asunto(s)
Ecosistema , Polinización , Biodiversidad , Especies Introducidas , Plantas
7.
AoB Plants ; 12(3): plaa023, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32607138

RESUMEN

Phenotypic changes in plants during domestication may disrupt plant-herbivore interactions. Because wild and cultivated plants have different habitats and some anti-herbivore defences exhibit some plasticity, their defences may be also influenced by the environment. Our goal was to assess the effects of domestication and the environment on herbivory and some anti-herbivore defences in chaya (Cnidoscolus aconitifolius) in its centre of domestication. Herbivores, herbivory, and direct and indirect anti-herbivore defences were assessed in wild and cultivated plants. The same variables were measured in the field and in a common garden to assess environmental effects. Our results show that domestication increased herbivory and herbivore abundance, but reduced direct and some indirect defences (ants). The environment also affected the herbivore guild (herbivore abundance and richness) and some direct and indirect defences (trichome number and ants). There was also an interaction effect of domestication and the environment on the number of trichomes. We conclude that domestication and the environment influence herbivory and anti-herbivore defences in an additive and interactive manner in chaya.

8.
J Anim Ecol ; 89(8): 1775-1787, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32358787

RESUMEN

Tree diversity exerts a strong influence on consumer communities, but most work has involved single time point measurements over short time periods. Describing temporal variation associated with diversity effects over longer time periods is necessary to fully understand the effects of tree diversity on ecological function. We conducted a year-long study in an experimental system in southern Mexico assessing the effects of tree diversity on the abundance and diversity of foraging birds. To this end, we recorded bird visitation patterns in 32 tree plots (21 × 21 m; 12 tree species monocultures, 20 four-species polycultures) every 45 days (n = 8 surveys) and for each plot estimated bird abundance, richness, functional diversity (FD) and phylogenetic diversity (PD). In each case, we reported temporal (intra-annual) variation in the magnitude of tree diversity effects, and calculated the temporal stability of these bird responses. Across surveys, tree diversity noticeably affected bird responses, demonstrated by significantly higher abundance (43%), richness (32%), PD (25%) and FD (25%) of birds visiting polyculture plots compared to monoculture plots, as well as a distinct species composition between plot types. We also found intra-annual variation in tree diversity effects on these response variables, ranging from surveys for which the diversity effect was not significant to surveys where a significant 80% increase (e.g. for bird FD and PD) was observed in polyculture relative to monoculture plots. Notably, tree diversity increased the stability of all bird responses, with polycultures having a greater stability abundance (18%), richness (38%), PD (32%), and FD (35%) of birds visiting tree species polycultures compared to monocultures. These results show that tree diversity not only increases bird visitation to plots, but also stabilizes bird habitat usage over time in ways that could implicate insurance-related mechanisms. Such findings are highly relevant for understanding the long-term effects of plant diversity on vertebrates and the persistence of bird-related ecosystem functions. More work is needed to unveil the ecological mechanisms behind temporal variation in vertebrate responses to tree diversity and their consequences for community structure and function.


Asunto(s)
Ecosistema , Bosques , Animales , Biodiversidad , Aves , México , Filogenia
9.
Ann Bot ; 125(7): 1003-1012, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31985008

RESUMEN

BACKGROUND: Pollen transfer via animals is necessary for reproduction by ~80 % of flowering plants, and most of these plants live in multispecies communities where they can share pollinators. While diffuse plant-pollinator interactions are increasingly recognized as the rule rather than the exception, their fitness consequences cannot be deduced from flower visitation alone, so other proxies, functionally closer to seed production and amenable for use in a broad variety of diverse communities, are necessary. SCOPE: We conceptually summarize how the study of pollen on stigmas of spent flowers can reflect key drivers and functional aspects of the plant-pollinator interaction (e.g. competition, facilitation or commensalism). We critically evaluate how variable visitation rates and other factors (pollinator pool and floral avoidance) can give rise to different relationships between heterospecific pollen and (1) conspecific pollen on the stigma and (2) conspecific tubes/grain in the style, revealing the complexity of potential interpretations. We advise on best practices for using these proxies, noting the assumptions and caveats involved in their use, and explicate what additional data are required to verify interpretation of given patterns. CONCLUSIONS: We conclude that characterizing pollen on stigmas of spent flowers provides an attainable indirect measure of pollination interactions, but given the complex processes of pollen transfer that generate patterns of conspecific-heterospecific pollen on stigmas these cannot alone determine whether competition or facilitation are the underlying drivers. Thus, functional tests are also needed to validate these hypotheses.


Asunto(s)
Magnoliopsida , Polen , Animales , Flores , Plantas , Polinización , Reproducción
10.
PLoS One ; 14(11): e0218227, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31703061

RESUMEN

The interactions between pairs of native and alien plants via shared use of pollinators have been widely studied. Community level studies however, are necessary in order to fully understand the factors and mechanisms that facilitate successful plant invasion, but these are still scarce. Specifically, few community level studies have considered how differences in invasion level (alien flower abundance), and degree of floral trait similarity between native and invasive species, mediate effects on native plant-pollinator communities. Here, we evaluated the role of alien species on overall plant-floral visitor network structure, and on species-level network parameters, across nine invaded coastal communities distributed along 205 km in Yucatán, México that vary in alien species richness and flower abundance. We further assessed the potential the role of alien plant species on plant-floral visitor network structure and robustness via computational simulation of native and invasive plant extinction scenarios. We did not find significant differences between native and alien species in their functional floral phenotypes or in their visitation rate and pollinator community composition in these invaded sites. Variation in the proportion of alien plant species and flower abundance across sites did not influence plant-pollinator network structure. Species-level network parameters (i.e., normalized degree and nestedness contribution) did not differ between native and alien species. Furthermore, our simulation analyses revealed that alien species are functionally equivalent to native species and contribute equally to network structure and robustness. Overall, our results suggest that high levels of floral trait similarity and pollinator use overlap may help facilitate the integration of alien species into native plant-pollinator networks. As a result, alien species may also play a similar role than that of natives in the structure and stability of native plant and pollinator communities in the studied coastal sand dune ecosystem.


Asunto(s)
Ecosistema , Especies Introducidas , Plantas , Animales , Simulación por Computador , Extinción Biológica , Flores , México , Modelos Biológicos , Fenómenos Fisiológicos de las Plantas , Polinización , Simbiosis
11.
Am J Bot ; 106(10): 1308-1315, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31553505

RESUMEN

PREMISE: Invasive plant species can integrate into native plant-pollinator communities, but the underlying mechanisms are poorly understood. Competitive interactions between invasive and native plants via heterospecific pollen (HP) and differential invasive HP effects depending on HP arrival time to the stigma may mediate invasion success, but these have been little studied. METHODS: We evaluated patterns and effects of HP receipt on pollen tube growth in two native and one invasive species in the field. We also used hand-pollination experiments to evaluate the effect of invasive HP pollen and its arrival time on native reproductive success. RESULTS: Native species receive smaller and less-diverse HP loads (5-7 species) compared to invasive species (10 species). The load size of HP had a negative effect on the proportion of pollen tubes in both native species but not in the invasive, suggesting higher HP tolerance in the latter. Invasive HP arrival time differentially affected pollen tube success in native species. CONCLUSIONS: Our results highlight the need to study reciprocal HP effects between invasive and native species and the factors that determine differential responses to HP receipt to fully understand the mechanisms facilitating invasive species integration into native plant-pollinator communities.


Asunto(s)
Polen , Polinización , Flores , Especies Introducidas , Tubo Polínico , Reproducción
12.
New Phytol ; 224(2): 949-960, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31276214

RESUMEN

The interspecific range of epigenetic variation and the degree to which differences between angiosperm species are related to geography, evolutionary history, ecological settings or species-specific traits, remain essentially unexplored. Genome-wide global DNA cytosine methylation is a tractable 'epiphenotypic' feature suitable for exploring these relationships. Global cytosine methylation was estimated in 279 species from two distant, ecologically disparate geographical regions: Mediterranean Spain and tropical México. At each region, four distinct plant communities were analyzed. Global methylation spanned a 10-fold range among species (4.8-42.2%). Interspecific differences were related to evolutionary trajectories, as denoted by a strong phylogenetic signal. Genomes of tropical species were on average less methylated than those of Mediterranean ones. Woody plants have genomes with lower methylation than perennial herbs, and genomes of widespread species were less methylated than those of species with restricted geographical distribution. The eight communities studied exhibited broad and overlapping interspecific variances in global cytosine methylation and only two of them differed in average methylation. Altogether, our broad taxonomic survey supported global methylation as a plant 'epiphenotypic' trait largely associated with species evolutionary history, genome size, range size and woodiness. Additional studies are required for better understanding the environmental components underlying local and geographical variation.


Asunto(s)
Ecosistema , Magnoliopsida/genética , Magnoliopsida/fisiología , Plantas/clasificación , Plantas/genética , Clima Tropical , Metilación de ADN , Demografía , Regulación de la Expresión Génica de las Plantas , Región Mediterránea
13.
Am J Bot ; 106(8): 1059-1067, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31322738

RESUMEN

PREMISE: The occurrence and amount of herbivory are shaped by bottom-up forces, primarily plant traits (e.g., defenses), and by abiotic factors. Addressing these concurrent effects in a spatial context has been useful in efforts to understand the mechanisms governing variation in plant-herbivore interactions. Still, few studies have evaluated the simultaneous influence of multiple sources of bottom-up variation on spatial variation in herbivory. METHODS: We tested to what extent chemical (phenolics, production of terpenoid glands) and physical (pubescence) defensive plant traits and climatic factors are associated with variation in herbivory by leaf-chewing insects across populations of wild cotton (Gossypium hirsutum). RESULTS: We found substantial population variation in cotton leaf defenses and insect leaf herbivory. Leaf pubescence, but not gossypol gland density or phenolic content, was significantly negatively associated with herbivory by leaf-chewing insects. In addition, there were direct effects of climate on defenses and herbivory, with leaf pubescence increasing toward drier conditions and leaf damage increasing toward wetter and cooler conditions. There was no evidence, however, of indirect effects (via plant defenses) of climate on herbivory. CONCLUSIONS: These results suggest that spatial variation in insect herbivory on wild G. hirsutum is predominantly driven by concurrent and independent influences of population variation in leaf pubescence and climatic factors.


Asunto(s)
Gossypium , Herbivoria , Animales , Clima , Insectos , Fenotipo , Hojas de la Planta
14.
Sci Rep ; 9(1): 8086, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31147606

RESUMEN

Species interactions are known to be key in driving patterns of biodiversity across the globe. Plant-plant interactions through heterospecific pollen (HP) transfer by their shared pollinators is common and has consequences for plant reproductive success and floral evolution, and thus has the potential to influence global patterns of biodiversity and plant community assembly. The literature on HP transfer is growing and it is therefore timely to review patterns and causes of among-species variation in HP receipt at a global scale, thus uncovering its potential contribution to global patterns of biodiversity. Here we analyzed published data on 245 species distributed across five continents to evaluate latitudinal and altitudinal patterns of HP receipt. We further analyzed the role of floral symmetry and evolutionary history in mediating patterns of HP receipt. Latitude and elevation affected the likelihood and intensity of HP receipt indicating that HP transfer increases in species-rich communities and in areas with high abundance of vertebrate pollinators. Floral symmetry and evolutionary history determined HP load size across plant communities worldwide. Overall, our results suggest that HP receipt may have the potential to contribute to global geographic patterns of plant diversity by imposing strong selective pressures in species-rich areas across the globe.


Asunto(s)
Biodiversidad , Dispersión de las Plantas , Plantas/genética , Polinización/genética , Selección Genética , Filogenia , Filogeografía , Polen/genética
15.
Proc Biol Sci ; 285(1890)2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30404881

RESUMEN

Biodiversity affects the structure of ecological communities, but little is known about the interactive effects of diversity across multiple trophic levels. We used a large-scale forest diversity experiment to investigate the effects of tropical tree species richness on insectivorous birds, and the subsequent indirect effect on predation rates by birds. Diverse plots (four tree species) had higher bird abundance (61%), phylogenetic diversity (61%), and functional diversity (55%) than predicted based on single-species monocultures, which corresponded to higher attack rates on artificial caterpillars (65%). Tree diversity effects on attack rate were driven by complementarity among tree species, with increases in attack rate observed on all tree species in polycultures. Attack rates on artificial caterpillars were higher in plots with higher bird abundance and diversity, but the indirect effect of tree species richness was mediated by bird diversity, providing evidence that diversity can interact across trophic levels with consequences tied to ecosystem services and function.


Asunto(s)
Biodiversidad , Aves/fisiología , Conducta Alimentaria , Conducta Predatoria , Árboles/fisiología , Clima Tropical , Animales , Bosques , México
16.
Am J Bot ; 105(9): 1601-1608, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30168577

RESUMEN

PREMISE OF THE STUDY: There is growing interest in understanding plant-plant interactions via pollen transfer at the community level. Studies on the structure and spatial variability of pollen transfer networks have been valuable to this understanding. However, there is high variability in the intensity of sampling used to characterize pollen transfer interactions, which could influence network structure. To date, there is no knowledge of how sampling effort influences the richness of pollen on stigmas and thereby transfer interactions observed, nor how this may vary across species and study sites. METHODS: We use rarefaction curves on 16 species to characterize the relationship between sampling effort (number of stigmas analyzed) and the richness of pollen transfer interactions recorded. We further assess variability in this relationship among species, plant community types, and sites within a single plant community. KEY RESULTS: We show high among-species variation in the amount of sampling required to sufficiently characterize interspecific pollen transfer. We further reveal variability in the sampling effort-interaction richness relationship among different plant communities and even for the same species growing in different sites. CONCLUSIONS: The wide heterogeneity in the sampling effort required to accurately characterize pollen transfer interactions observed has the potential to influence the characterization of pollen transfer dynamics. Thus, sampling completeness should be considered in future studies to avoid overestimation of modularity and specialization in pollen transfer networks that may bias the predicted causes and expected consequences of such processes for plant-plant interactions.


Asunto(s)
Fenómenos Fisiológicos de las Plantas , Polen/fisiología , Ecosistema , Polinización , Especificidad de la Especie
17.
Sci Rep ; 8(1): 596, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29330375

RESUMEN

While plant intra-specific variation in the stoichiometry of nutrients and carbon is well documented, clines for such traits have been less studied, despite their potential to reveal the mechanisms underlying such variation. Here we analyze latitudinal variation in the concentration of leaf nitrogen (N), phosphorus (P), carbon (C) and their ratios across 30 populations of the perennial herb Ruellia nudiflora. In addition, we further determined whether climatic and soil variables underlie any such latitudinal clines in leaf traits. The sampled transect spanned 5° latitude (ca. 900 km) and exhibited a four-fold precipitation gradient and 2 °C variation in mean annual temperature. We found that leaf P concentration increased with precipitation towards lower latitudes, whereas N and C did not exhibit latitudinal clines. In addition, N:P and C:P decreased towards lower latitudes and latitudinal variation in the former was weakly associated with soil conditions (clay content and cation exchange capacity); C:N did not exhibit a latitudinal gradient. Overall, these results emphasize the importance of addressing and disentangling the simultaneous effects of abiotic factors associated with intra-specific clines in plant stoichiometric traits, and highlight the previously underappreciated influence of abiotic factors on plant nutrients operating under sharp abiotic gradients over smaller spatial scales.


Asunto(s)
Acanthaceae/química , Carbono/análisis , Nitrógeno/análisis , Fósforo/análisis , Fenotipo , Hojas de la Planta/química , Lluvia , Estaciones del Año , Estrés Fisiológico , Temperatura
18.
Am J Bot ; 104(2): 241-251, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28183831

RESUMEN

PREMISE OF STUDY: The factors driving variation in species interactions are often unknown, and few studies have made a link between changes in interactions and the strength of selection. METHODS: We report on spatial variation in functional responses by a seed predator (SP) and its parasitic wasps associated with the herb Ruellia nudiflora. We assessed the influence of plant density on consumer responses and determined whether density effects and spatial variation in functional responses altered natural selection by these consumers on the plant. We established common gardens at two sites in Yucatan, Mexico, and planted R. nudiflora at two densities in each garden. We recorded fruit output and SP and parasitoid attack; calculated relative fitness (seed number) under scenarios of three trophic levels (accounting for SP and parasitoid effects), two trophic levels (accounting for SP but not parasitoid effects), and one trophic level (no consumer effects); and compared selection strength on fruit number under these scenarios across sites and densities. KEY RESULTS: There was spatial variation in SP recruitment, whereby the SP functional response was negatively density-dependent at one site but density-independent at the other; parasitoid responses were density-independent and invariant across sites. Site variation in SP attack led, in turn, to differences in SP selection on fruit output, and parasitoids did not alter SP selection. There were no significant effects of density at either site. CONCLUSIONS: Our results provide a link between consumer functional responses and consumer selection on plants, which deepens our understanding of geographic variation in the evolutionary outcomes of multitrophic interactions.


Asunto(s)
Acanthaceae/parasitología , Ecología , Ecosistema , Avispas/fisiología , Acanthaceae/fisiología , Animales , Evolución Biológica , Frutas/parasitología , Frutas/fisiología , Interacciones Huésped-Parásitos , México , Densidad de Población , Semillas/parasitología , Semillas/fisiología , Selección Genética
19.
Am J Bot ; 103(3): 396-407, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26507115

RESUMEN

PREMISE OF THE STUDY: Coflowering plants are at risk for receiving pollen from heterospecifics as well as conspecifics, yet evidence shows wide variation in the degree that heterospecific pollen transfer occurs. Evaluation of patterns and correlates of among- and within-species variation in heterospecific pollen (HP) receipt is key to understanding its importance for floral evolution and species coexistence; however, the rarity of deeply sampled multispecies comparisons has precluded such an evaluation. METHODS: We evaluated patterns of among- and within-species variation in HP load size and diversity in 19 species across three distinct plant communities. We assessed the importance of phenotypic specialization (floral phenotype), ecological specialization (contemporary visitor assemblage), and conspecific flower density as determinants of among-species variation. We present hypotheses for different accrual patterns of HP within species based on the evenness and quality of floral visitors and evaluated these by characterizing the relationship between conspecific pollen (CP) and HP receipt. KEY RESULTS: We found that within-species variation in HP receipt was greater than among-species and among-communities variation. Among species, ecological generalization emerged as the strongest driver of variation in HP receipt irrespective of phenotypic specialization. Within-species variation in HP load size and diversity was predicted most often from two CP-HP relationships (linear or exponentially decreasing), suggesting that two distinct types of plant-pollinator interactions prevail. CONCLUSIONS: Our results give important insights into the potential drivers of among- and within-species variation in HP receipt. They also highlight the value of explorations of patterns at the intraspecific level, which can ultimately shed light on plant-pollinator-mediated selection in diverse plant communities.


Asunto(s)
Biodiversidad , Flores/fisiología , Polen/fisiología , Polinización/fisiología , Análisis de Regresión , Especificidad de la Especie
20.
PLoS One ; 10(8): e0132671, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26241962

RESUMEN

Plant diversity can influence predators and omnivores and such effects may in turn influence herbivores and plants. However, evidence for these ecological feedbacks is rare. We evaluated if the effects of tree species (SD) and genotypic diversity (GD) on the abundance of different guilds of insect herbivores associated with big-leaf mahogany (Swietenia macrophylla) were contingent upon the protective effects of ants tending extra-floral nectaries of this species. This study was conducted within a larger experiment consisting of mahogany monocultures and species polycultures of four species and -within each of these two plot types- mahogany was represented by either one or four maternal families. We selected 24 plots spanning these treatment combinations, 10 mahogany plants/plot, and within each plot experimentally reduced ant abundance on half of the selected plants, and surveyed ant and herbivore abundance. There were positive effects of SD on generalist leaf-chewers and sap-feeders, but for the latter group this effect depended on the ant reduction treatment: SD positively influenced sap-feeders under ambient ant abundance but had no effect when ant abundance was reduced; at the same time, ants had negative effects on sap feeders in monoculture but no effect in polyculture. In contrast, SD did not influence specialist stem-borers or leaf-miners and this effect was not contingent upon ant reduction. Finally, GD did not influence any of the herbivore guilds studied, and such effects did not depend on the ant treatment. Overall, we show that tree species diversity influenced interactions between a focal plant species (mahogany) and ants, and that such effects in turn mediated plant diversity effects on some (sap-feeders) but not all the herbivores guilds studied. Our results suggest that the observed patterns are dependent on the combined effects of herbivore identity, diet breadth, and the source of plant diversity.


Asunto(s)
Hormigas/fisiología , Conducta Animal , Ecosistema , Herbivoria/fisiología , Insectos/fisiología , Árboles , Animales , Biota , Bosques , Variación Genética , Genotipo , Control de Insectos , Insectos/clasificación , Meliaceae/genética , México , Dispersión de las Plantas , Hojas de la Planta , Especificidad de la Especie , Árboles/clasificación , Árboles/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...